An Experimental Study of the Effect of Flow and High Level Acoustic Excitation on the Acoustic Properties of Perforates and Orifices
نویسندگان
چکیده
Perforates are for instance used in mufflers for automotive applications and in acoustic liners for aircraft engines. In these applications they are often exposed to high level acoustic excitation in combination with grazing or bias flow. The paper is based on an experimental study of the nonlinear properties of these types of samples without mean grazing or bias flow as well as on a study of an orifice with bias flow under medium and high sound level excitation. The effect of grazing flow is discussed based on data from the literature. It is known from previous studies that high level acoustic excitation at one frequency will change the acoustic impedance of perforates at other frequencies, thereby changing the boundary condition seen by the acoustic waves. This effect could be used to change the impedance boundary conditions and for instance increase the absorption. It could obviously also pose a problem for the correct modeling of sound transmission through ducts lined with such impedance surfaces. Experimental results are compared to a quasi-stationary model. The effect of the combination of frequency components and phase in the excitation signal is studied. The bias flow tests included different flow speeds for different frequencies. The level of acoustic excitation is varied from much smaller to larger than the mean flow velocity. It is shown that bias flow makes the acoustic properties more complex compared to the no bias flow case, especially when the velocity ratio between acoustic particle velocity and mean flow velocity is near unity.
منابع مشابه
An overview of therapeutic applications of ultrasound based on synergetic effects with gold nanoparticles and laser excitation
Acoustic cavitation which occurs at high intensities of ultrasound waves can be fatal for tumor cells. The existence of dissolved gases and also the presence of nanoparticles (NPs) in a liquid, irradiated by ultrasound, decrease the acoustic cavitation onset threshold and the resulting bubbles collapse. On the other hand, due to unique capabilities and optical properties of gold nanoparticles (...
متن کاملDetermining the Hydro-acoustic Characteristics of the Ship Propeller in Uniform and Non-uniform Flow
This research has been carried out to determine the marine propeller hydro-acoustic characteristics by Reynolds-Averaged Navier-Stokes (RANS) solver in both uniform and non-uniform wake flow at different operating conditions Wake flow can cause changes in pressure fluctuation and gas effect on propeller noise spectrum. Noise is generated by the induced trailing vortex wake and induced pressure ...
متن کاملEffect of non-acoustic properties on the sound absorption of polyurethane foams
In this paper the influence of non-acoustic properties on the sound absorption coefficient of polyurethane foams as a porous medium is investigated. Biot’s equations with transfer matrix method, as the solution approach are employed to evaluate the sound absorption coefficient of selected polyurethane foams. The major issue is the dependency of non-acoustic properties on each other which makes ...
متن کاملFeasibility study of silica aerogel nanocomposites application to enhance acoustic properties
Background and Objective: Noise pollution is one of the serious environmental issue. Sound control technologies based on sound absorption and sound insulation are considered as the two widely used methods. Therefore, the aim of this study was to modify silica aerogel nanocomposites to improve its acoustic properties. Materials and Methods: This applied experimental research involved in examin...
متن کاملAerodynamic Noise Computation of the Flow Field around NACA 0012 Airfoil Using Large Eddy Simulation and Acoustic Analogy
The current study presents the results of the aerodynamic noise prediction of the flow field around a NACA 0012 airfoil at a chord-based Reynolds number of 100,000 and at 8.4 degree angle of attack. An incompressible Large Eddy Simulation (LES) turbulence model is applied to obtain the instantaneous turbulent flow field. The noise prediction is performed by the Ffowcs Williams and Hawkings (FW-...
متن کامل